GENERAL INFORMATION: All participants will sign up via Eventbrite (using the button to the right).  A link to the meeting will be emailed to all participants approximately 30 minutes prior to the meeting start time.  Registration for this meeting will close at 5:30pm on April 5th.  This month’s meeting is free; however, donations are appreciated and can be given via Eventbrite during sign-up or via PayPal to For those who have not used Zoom, it is free to sign up and you do not need a paid account to attend the meeting.  We suggest logging in at least 10-15 minutes early if this is your first time using Zoom or you have not recently updated your Zoom account.  SCGS officers will be standing by to assist as best we can. If you have any issues, please email us at

Please note, the meeting may be recorded for future use.

April 2021

Speaker: Brenna Quigley

Topic: Connections between Geology, Soil, and Great Wine

When: Monday, April 5th (6:30PM – 8:00PM)

Abstract: Terroir is a French word that describes a wine’s ability to reflect a unique sense of place, whether from one wine region to another, or from individual sections within the same vineyard. The term is one of the most mysterious concepts in the world of wine, with heated debates on the topic more common than not amongst groups of experienced tasters. The Oxford Dictionary defines terroir as “the complete natural environment in which a particular wine is produced, including factors such as the soil, topography, and climate”, as well as “the characteristic taste and flavor imparted to a wine by the environment in which it is produced”. Geology plays an important role in controlling these factors, and many wine experts believe that the bedrock geology of a region imparts a distinct fingerprint on its wines. However, there are many nuanced variations of this concept, with a major distinction being whether or not to include the human aspect (local wine culture and heritage including farming practices and vinification styles) involved in the production of the wine. This talk will introduce the history of terroir and how the concept has shaped wine regions in both the “old” and “new” worlds of wine. We will review the major geologic factors that impact a site’s terroir, as well as the human factors that can either enhance or obscure these qualities. We will also comment on the research that is currently underway on how these factors affect the physiology of the vine and the characteristics of the final wine. Throughout this discussion we will relate these concepts to the local wine regions of Santa Barbara County, and discuss some general characteristics of each of Santa Barbara’s American Viticultural Areas (AVAs).

Speaker Bio: Located in Napa, CA, Brenna is committed to thoughtfully applying the science of geology to the world of wine through both education and hands-on vineyard investigations.  She works with wine professionals in all areas of the trade, from growers in France to importers and buyers in the US, in order to precisely define the most impactful elements of their terroirs in a relevant and approachable manner. She is also the founder and host of Roadside Terroir, a podcast program that drives you through the wines, geology, and culture of your favorite wine regions. The first season covers Santa Barbara County and is out now.
Brenna received her Bachelor’s Degree in Aquatic Biology and Geology from the University of California, Santa Barbara in 2012, where she stayed on to earn her Masters in Geology with Dr. Phil Gans in 2015. Her research focused on geologic mapping and structural geology (how and why rocks deform). She has also worked extensively in the mining industry where she further developed her skills in geologic mapping and interpretation, soil sampling, and geophysical surveying. During her time at UCSB, Brenna spent her free time exploring the wine country of Santa Barbara, and began working at her favorite tasting room on the weekends. It was there, working with Seth and Magan Kunin that she fell in love with the wine industry and the complex concept of terroir.
Recently, Brenna has had the great privilege of working with growers, producers, sommeliers, and importers all over the world. From her backyard in the Napa Valley, to diverse regions in the old world including France, Italy, Austria, and Spain.

March 2021

Speaker: Dr. Andrea Balbas

Position: Assistant Professor at California State University, Long Beach

Topic: The Missoula Floods!

When: Monday, March 1st (6:30PM – 8:00PM)

Speaker Bio: Dr. Balbas is an Assistant Professor at California State University Long Beach. She is a multi-method geochronologist whose research has focused on paleomagnetism, cosmogenic nuclides, lava chronologies and megafloods. She is a passionate educator and advocate for increasing diversity and opportunity in the sciences. Currently, her research involves determining the timing and origin of non-hotspot related intraplate volcanism along the Northwest Hawaiian Ridge and wider Pacific Plate. She also aims to develop a sediment coring program of the Santa Monica and San Pedro basins to understand fire and anthropogenic environmental impacts in Southern California in the late Holocene. She is happy to discuss how to create more job and research opportunities for CSULB geology students, all ideas and support are welcome.

Abstract: The Missoula Floods are perhaps the most well-known cataclysmic flooding events from the geologic record. The destructive power and mind-bending proportions of these floods have provoked awe and disbelief as tenacious geologists meticulously pieced together the natural impacts and causes of the floods. The floods were sourced by Glacial Lake Missoula that formed when an ice dam held back the Clark Fork River in what is modern-day Montana. Estimates of the lake indicate it measured about 7,770 km2 and contained about 2,100 km3 of water, half the volume of Lake Michigan. Once unleashed, this massive amount of water swept over Idaho and Eastern Washington in a 3-day window at a highest estimated flux of 2.7 million m³/s, 13 times the Amazon River. While the Missoula Floods remain one of the most shocking abrupt events known in the geologic record, it is perhaps the human behavior of geologists that worked to prevent the acceptance of cataclysmic flooding that remains the greatest cautionary tale associated with the unraveling of the Missoula Floods story.

January 2021

Speaker: W. Paul Burgess

Position: Engineering Geologist in the California Geological Survey’s Regional Geologic and Landslide Mapping Program

Topic: Shallow landslide and debris flow activity in San Diego County, early April 2020! 

When: Monday, January 20th (6:30PM – 8:00PM)

Speaker Bio: W. Paul Burgess is an Engineering Geologist in the California Geological Survey’s Regional Geologic and Landslide Mapping Program, where he arrived in October 2018. Prior to joining the CGS, Burgess worked in the geotechnical engineering world in Los Angeles. He earned a MS in Geology from the University of California, Los Angeles focused on studying active faulting and tectonic geomorphology in the northeastern Indian Himalayan foothills. Prior to his time at UCLA, he earned his BS in Geology at the University of Houston in Texas, where he first became fascinated in geology after participating in geologic expeditions traversing the far northwestern Nepal Himalaya. Since coming aboard the CGS, Burgess has been especially grateful to steadily grow his knowledge of mapping landslide geomorphology and processes. In his spare time he enjoys riding his bicycle.

Abstract: In early April 2020, a large regional storm-induced landslide event affected multiple communities in northern San Diego County. In particular, early on the evening of Friday April 10, a large debris flow impacted a beloved local tennis club, residential community, assisted-living facility, and charter school in Encinitas and caused upwards of $1 million in damage. In late April, Burgess traveled to the impacted area and made field observations. UAS-based imagery was obtained from the tennis club, and subsequent work with Alex Morelan (Engineering Geologist, CGS) was essential for performing change detection and slide volume calculations within the inundation zone of the debris flow. Approximately 2,500 cubic meters of debris traveled approximately one kilometer from its source; luckily the bulk of the debris (approximately 2,000 cubic meters) was contained by tennis court fencing, which saved the downstream area from more significant damage. The importance of characterizing the debris flow and other landslides as completely as possible led to the additional gathering of meteorological data for the storm event. Stefani Lukashov (Engineering Geologist, CGS) provided analysis of available regional and local precipitation data for the storm event, which successfully documented triggering rainfall conditions responsible for the landslide and debris flow activity. In all, more than 40 separate landslide events, including the debris flow, occurred within an approximate 48-hour period of time during and immediately following the largest recorded rainfall on record in northern San Diego County. The cataloging of these landslide events has added a robust collection of new data to the CGS Recent Landslides database, demonstrating the utility of this innovative data product.